Checking Proofs in the Metamathematics of First Order Logic

نویسندگان

  • Mario Aiello
  • Richard W. Weyhrauch
چکیده

1 ) I t i s the most t r a d i t i o n a l , i . e . luetanuith ema t i cs , as i t appears in l o g i c books, i s u s u a l l y s t a t e d i n terms o f s t r i n g s . 2) Axioms in terras of a b s t r a c t syn tax are s imply theorems o f the theory expressed in terms of s t r i n g s . Thus the two r e p r e s e n t a t i o n s look sub s t a n t i a l l y the same w i t h respec t t o " h i g h l e v e l " theorems. 3) I l l f o r m e d fo rmulas can be ment ioned. T h i s is o f course imposs ib le in an a x i o m a t i z a t i o n in terms o f the a b s t r a c t syn tax . The p r o p e r t i e s o f w f f s r e l e v a n t to our theory have been d e f i n e d by the p r e d i c a t e s FR, FRN, GEB and SBT, F R ( x , f ) is t r u e i f f the v a r i a b l e x has a t l e a s t one f r e e occur rence i n the wf f f , w h i l e FRN(x ,n , f ) and CEB(x ,n , f ) are r e s p e c t i v e l y t r u e when the v a r i a b l e x occurs f r e e or bound at the p lace n in the fo rmu la f . In a d d i t i o n to these p r e d i c a t e s , some gene ra l i zed s e l e c t o r f u n c t i o n s are d e f i n e d , wh ich eva lua te the f i r s t o r the k t h f r e e occurrence of a v a r i a b l e in a w f f , or the number of i t s f r e e occu r rences . The p r e d i c a t e SBT i s then d e f i n e d . I t ax io tnat izes the n o t i o n o f sub s t i t u t i o n of a term f o r any f r e e occur rence of a v a r i a b l e in a w f f .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human-Readable Machine-Verifiable Proofs for Teaching Constructive Logic

A linear syntax for natural deduction proofs in first-order intuitionistic logic is presented, which has been an effective tool for teaching logic. The proof checking algorithm is also given, which is the core of the tutorial proof checker Tutch. This syntax is then extended to proofs on the assertion level which resemble single inferences one would make in a rigorous proof. The resulting langu...

متن کامل

Automatic Construction of Hoare Proofs from Abstract Interpretation Results

Interpretation Results Sunae Seo, Hongseok Yang, and Kwangkeun Yi 1 Department of Computer Science, Korea Advanced Institute of Science and Technology [email protected] 2 MICROS Research Center, Korea Advanced Institute of Science and Technology [email protected] 3 School of Computer Science and Engineering, Seoul National University [email protected] Abstract. By combining program lo...

متن کامل

Temporal Logic Verifications for UML, the Vending Machine Example

To verify UML specifications, we need formal specification, that is a well-known difficulty. Since UML allows both the use of data types and dynamic specifications, the verification of temporal logic properties leads to other problems. This paper presents an example of a system specified in UML and completed with a formal and component-oriented approach. We use an algebraic approach called Grap...

متن کامل

Interpolant Strength Revisited

Craig’s interpolation theorem has numerous applications in model checking, automated reasoning, and synthesis. There is a variety of interpolation systems which derive interpolants from refutation proofs; these systems are ad-hoc and rigid in the sense that they provide exactly one interpolant for a given proof. In previous work, we introduced a parametrised interpolation system which subsumes ...

متن کامل

Proof Certificates for Equality Reasoning

The kinds of inference rules and decision procedures that one writes for proofs involving equality and rewriting are rather different from proofs that one might write in first-order logic using, say, sequent calculus or natural deduction. For example, equational logic proofs are often chains of replacements or applications of oriented rewriting and normal forms: logical connectives then play mi...

متن کامل

Proof-checking Euclid

We used computer proof-checking methods to verify the correctness of our proofs of the propositions in Euclid Book I. We used axioms as close as possible to those of Euclid, in a language closely related to that used in Tarski’s formal geometry. We used proofs as close as possible to those given by Euclid, but filling Euclid’s gaps and correcting errors. Euclid Book I has 48 propositions; we pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1975